Задание 10 ОГЭ информатика по теме «Дискретная форма представления числовой, текстовой, графической и звуковой информации»

На уроке рассмотрен материал для подготовки к ОГЭ по информатике, разбор 10 задания. Объясняется тема двоичного представления информации.

ОГЭ по информатике 10 задания объяснение

10-е задание: «Дискретная форма представления числовой, текстовой, графической и звуковой информации».
Уровень сложности — базовый,
Максимальный балл — 1,
Примерное время выполнения — 3 минуты.
* до 2020 г — это было задание № 13 ОГЭ

  

Двоичная система счисления

Количество цифр (основание системы): 2
Входящие цифры (алфавит): 0, 1

Перевод чисел из 10-й системы счисления в двоичную:


Перевод чисел из 10-й системы счисления в двоичную
Перевод чисел из 10-й сист. сч-я в двоичную

Егифка ©:

егифка перевода из десятичной в двоичную систему счисления

Перевод чисел из двоичной системы счисления в десятичную:


Перевод чисел из 2-й системы счисления в 10-ую
Перевод чисел из 2-й сист. сч-я в 10-ую

Егифка ©:

егифка перевода из двоичной в десятичную систему счисления

При работе с большими числами, лучше использовать разложение по степеням двойки:

разложение по степеням двойки
Разложение по степеням двойки

Егифка ©:

егифка разложения по степеням двойки

Восьмеричная система счисления

Количество цифр (основание системы): 8
Входящие цифры (алфавит): 0, 1, 2, 3, 4, 5, 6, 7

Перевод чисел из десятичной системы счисления в восьмеричную


Перевод чисел из 10-й системы счисления в 8-ую
Перевод чисел из 10-й сист. сч-я в 8-ую

Перевод чисел из восьмеричной сист. сч-я в десятичную


Перевод чисел из 8-й системы счисления в 10-ую
Перевод чисел из 8-й системы счисления в 10-ую

Перевод чисел из 8-й сист. сч-я в 2-ую и обратно триадами
Перевод чисел из 8-й системы счисления в 2-ую и обратно триадами
Перевод из восьмеричной сист. сч-я в двоичную и обратно триадами
Егифка ©:

егифка перевод из двоичной системы счисления в восьмеричную

Шестнадцатеричная система счисления

Количество цифр (основание системы): 16
Входящие цифры (алфавит): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A (10), B (11), C (12), D (13), E (14), F (15)

Перевод чисел из десятичной системы счисления в шестнадцатеричную
Перевод чисел из 10-й системы счисления в 16-ую
Перевод из десятичной сист. сч-я в шестнадцатеричную
Перевод из шестнадцатеричной системы счисления в десятичную
Перевод чисел из 16-й системы счисления в 10-ую
Перевод из 16-й сист. сч-я в 10-ую
Перевод чисел из двоичной сист. сч-я в шестнадцатеричную и обратно тетрадами
Перевод чисел из 2-й системы счисления в 16-ую и обратно тетрадами
Перевод из двоичной с. сч-я в шестнадцатеричную и обратно тетрадами
Егифка ©:

егифка перевод из двоичной системы счисления в шестнадцатеричную

  • желательно выучить таблицу двоичного представления цифр от 0 до 7 в виде триад (групп из 3-х битов):
  • X10,X8    X2
    0	000
    1	001
    2	010
    3	011
    4	100
    5	101
    6	110
    7	111
    
  • желательно знать таблицу двоичного представления чисел от 0 до 15 (в шестнадцатеричной с-ме – 0-F16) в виде тетрад (групп из 4-х битов):
  • X10     X16      X2
    0	0       0000
    1	1       0001
    2	2       0010
    3	3       0011
    4	4       0100
    5	5       0101
    6	6       0110
    7	7       0111
    8	8	1000
    9	9	1001
    10	A	1010
    11	B	1011
    12	C	1100
    13	D	1101
    14	E	1110
    15	F	1111
    

Разбор 10 задания ОГЭ по информатике

Актуальное

Решение задания 10.3. Демонстрационный вариант ОГЭ 2022 г.

Среди приведённых ниже трёх чисел, записанных в различных системах счисления, найдите максимальное и запишите его в ответе в десятичной системе счисления. В ответе запишите только число, основание системы счисления указывать не нужно.

2316, 328, 111102

✍ Решение:

  • Последовательно переведем все данные числа в 10-ю систему счисления.
  • 10
    23 = 2*161 + 3*160 = 35
  • Первое число = 35.
  • 10
    32 = 3*81 + 2*80 = 26
  • Второе число = 26.
  • 11110 = 1*24 + 1*23  + 1*22  + 1*21 + 0 = 30
  • Треть число = 30. Наибольшее число — 35

Ответ: 35


Тренировочные

Решение задания 10.1:

Переведите число 120 из десятичной системы счисления в двоичную систему счисления. В ответе укажите двоичное число.

✍ Решение:
 

  • Так как перевод осуществляется в двоичную систему счисления, то используем деление на 2:
  •       рез-т     остаток
    120 |   60   |  0
    60  |   30   |  0
    30  |   15   |  0
    15  |    7   |  1
    7   |    3   |  1
    3   |    1   |  1
    
  • Перепишем все остатки снизу вверх, не забыв последний делитель 1!
  • Получим двоичное число: 1111000

Ответ: 1111000


Решение задания 10.2:

Переведите двоичное число 1101010 в десятичную систему счисления. В ответе укажите десятичное число.

✍ Решение:
 

  • Выполним быстрый перевод. Для начала над каждым разрядом исходного двоичного числа подпишем степени двойки справа налево:
  • 64 32  16  8  4  2  1
    1  1  0  1  0  1  0
    
  • Рассчитаем сумму тех степеней двоек, которые находятся над единичными разрядами:
  • 64 + 32 + 8 + 2 = 106
  • Получим десятичное число: 106

Ответ: 106


Решение задания 10.4:

Сколько единиц в двоичной записи шестнадцатеричного числа 2AC116?

Подобные задания для тренировки

✍ Решение:

  • В шестнадцатеричной с-ме счисления числа от 10 до 15 представлены буквами латинского алфавита: A-10, B-11, C-12, D-13, E-14, F-15.
  • Необходимо вспомнить двоичные коды чисел от 1 до 15 (см. теорию выше на странице), так как для перевода 16-ричного в двоичную с-му достаточно каждую цифру отдельно записать в виде четверки двоичных цифр (тетрады):
  •  2     A     C     1
    0010  1010  1100  0001
  • в этой записи 6 единиц

Результат: 6

Подробный разбор 10 задания с объяснением просмотрите на видео:

📹 Видео youTube

Решение задания 10.4:

Сколько существует целых чисел x, для которых выполняется неравенство 2A16<x<618?
В ответе укажите только количество чисел.

Подобные задания для тренировки

✍ Решение:

  • Переведем 2A16 в десятичную систему счисления:
  • 2A16 = 2*161+10*160 = 32 + 10 = 42
  • Переведем 618 в десятичную с-му счисления:
  • 618 = 6*81+1*80 = 48 + 1 = 49
  • Получим сравнение:
  • 42 < x < 49
  • Поскольку в задании дважды строгое сравнение (<), то количество целых, удовлетворяющих условию:
  • 49 - 42 - 1 = 6
  • Проверим: 43, 44, 45, 46, 47, 48

Результат: 6

Подробное решение данного 1 задания из демоверсии ЕГЭ 2018 года смотрите на видео:

📹 Видео youTube

Решение задания 10.5:

Вычислите значение выражения AE16 – 1916.
В ответе запишите вычисленное значение в десятичной системе счисления.

Подобные задания для тренировки

✍ Решение:

  • Переведем уменьшаемое и вычитаемое в десятичную систему счисления:
  • 1 0
    A E = 10*161 + 14*160 = 160 + 14 = 174
    
    
    * A16 соответствует числу 10 в десятичной системе счисления
    * E16 соответствует числу 14 в десятичной системе счисления
    1 0
    19 = 1*161 + 9*160 = 16 + 9 = 25
    
  • Найдем разность:
  • 174 - 25 = 149
    

Результат: 149

4 комментария для “Задание 10 ОГЭ информатика по теме «Дискретная форма представления числовой, текстовой, графической и звуковой информации»”

  1. Пожалуйста, помогите с объяснением 10 задачи ОГЭ:
    Десятичное число 511 записано в системе счисления с основанием n(n>1). Определите минимальное значение n, при котором в полученной записи числа не все цифры одинаковые. В ответе запишите запись числа в системе счисления с найденным основанием n. Основание системы счисления указывать не нужно

    1. К наиболшей цифре в числе нужно прибавить 1, в даном случае 5+1=6. n=6.

    2. for n in range(2,11):
      x = 511
      s = »
      while x > 0:
      s = str(x % n) + s
      x //= n
      print(s, n)

    3. число = 111111111 при n = 2
      число = 200221 при n = 3
      число = 13333 при n = 4
      число = 4021 при n = 5

Обсуждение закрыто.