Информатика ЕГЭ 5 задание разбор

5-е задание: «Анализ алгоритмов и исполнители»
Уровень сложности — базовый,
Требуется использование специализированного программного обеспечения — нет,
Максимальный балл — 1,
Примерное время выполнения — 4 минуты.
  
Проверяемые элементы содержания: Формальное исполнение алгоритма, записанного на естественном языке, или умение создавать линейный алгоритм для формального исполнителя с ограниченным набором команд
До ЕГЭ 2021 года — это было задание № 6 ЕГЭ

Плейлист видеоразборов задания на YouTube:

Задание демонстрационного варианта 2022 года ФИПИ


Решение задания про алгоритм, который строит число R

5_11:

На вход алгоритма подается натуральное число N. Алгоритм строит по нему новое число R следующим образом:

  1. Строится двоичная запись числа 4N.
  2. К этой записи дописываются справа еще два разряда по следующему правилу:
    • складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 10000 преобразуется в запись 100001;
    • над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на 2.

    Полученная таким образом запись является двоичной записью искомого числа R.

    Укажите такое наименьшее число N, для которого результат работы алгоритма больше 129. В ответе это число запишите в десятичной системе счисления.

  
Типовые задания для тренировки

Ответ: 8

✍ Подробное решение (-> на страницу с теорией)

📹 Видео (теоретическое решение)
📹 Видеорешение на RuTube здесь (теоретическое решение)


Демоверсия ЕГЭ 2018 информатика:

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.

  1. Строится двоичная запись числа N.
  2. К этой записи дописываются справа ещё два разряда по следующему правилу:
  3. складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;
  4. над этой записью производятся те же действия – справа дописывается остаток от деления суммы её цифр на 2.
  5. Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

    Укажите минимальное число R, которое превышает число 83 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.

Ответ: 86

✍ Подробное решение (-> на страницу с теорией)

📹 Видео -> решение с программированием
📹 Видеорешение на RuTube здесь
📹 Видео -> аналитическое решение
📹 Видеорешение на RuTube здесь -> аналитическое решение


5_18: :

Алгоритм получает на вход натуральное число N > 1 и строит по нему новое число R следующим образом:
1. Строится двоичная запись числа N.
2. Подсчитывается количество нулей и единиц в полученной записи. Если их количество одинаково, в конец записи добавляется её последняя цифра. В противном случае в конец записи добавляется цифра, которая встречается реже.
3. Шаг 2 повторяется ещё два раза.
4. Результат переводится в десятичную систему счисления.

При каком наименьшем исходном числе N > 65 в результате работы алгоритма получится число, кратное 4?

Типовые задания для тренировки

Ответ: 79
✍ Подробное решение (-> на страницу с теорией)


5_19:

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1) Число N переводим в двоичную запись.
2) Инвертируем все биты числа кроме первого.
3) Переводим в десятичную запись.
4) Складываем результат с исходным числом N.
Полученное число является искомым числом R.

Укажите наименьшее нечетное число N, для которого результат работы данного алгоритма больше 99. В ответе это число запишите в десятичной системе счисления.

Ответ: 65
✍ Подробное решение (-> на страницу с теорией)


5_13:

На вход алгоритма подается натуральное число N. Алгоритм строит по нему новое число R следующим образом:

1. Строится двоичная запись числа N.
2. К этой записи дописываются справа еще два разряда по следующему правилу:
— если N делится нацело на 4, в конец числа (справа) дописывается сначала ноль, а затем еще один ноль;
— если N при делении на 4 дает в остатке 1, то в конец числа (справа) дописывается сначала ноль, а затем единица;
— если N при делении на 4 дает в остатке 2, то в конец числа (справа) дописывается сначала один, а затем ноль;
— если N при делении на 4 дает в остатке 3, в конец числа (справа) дописывается сначала один, а затем еще одна единица.

Например, двоичная запись 1001 числа 9 будет преобразована в 100101, а двоичная запись 1100 числа 12 будет преобразована в 110000.

Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа R — результата работы данного алгоритма.

Укажите максимальное число R, которое меньше 100 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.
  
Типовые задания для тренировки

Ответ: 96

✍ Подробное решение (-> на страницу с теорией)

📹 Видео (теоретическое решение)
📹 Видеорешение на RuTube здесь (теоретическое решение)


5_14:

На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом:

1. Строится двоичная запись числа N.
2. К этой записи дописывается (дублируется) последняя цифра.
3. Затем справа дописывается бит чётности: 0, если в двоичном коде полученного числа чётное число единиц, и 1, если нечётное.
4. К полученному результату дописывается ещё один бит чётности.
  
Полученная таким образом запись (в ней на три разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.

Укажите минимальное число R, большее 114, которое может быть получено в результате работы этого алгоритма. В ответе это число запишите в десятичной системе.

Типовые задания для тренировки  

Ответ: 126

✍ Подробное решение (-> на страницу с теорией)


5 задание. Досрочный вариант 1 ЕГЭ по информатике 2020, ФИПИ:
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число следующим образом.
1) Строится двоичная запись числа N.
2) К этой записи дописываются справа ещё два разряда по следующему правилу:
  — если N чётное, в конец числа (справа) дописываются два нуля, в противном случае справа дописываются две единицы.
 

Например, двоичная запись 1001 числа 9 будет преобразована в 100111.

  
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа – результата работы данного алгоритма.

Укажите минимальное число N, для которого результат работы алгоритма будет больше 134. В ответе это число запишите в десятичной системе счисления.

Ответ: 33
  
✍ Подробное решение (-> на страницу с теорией)
Видео -> теоретическое решение
📹 Видеорешение на RuTube здесь -> теоретическое решение


5_16:

Автомат обрабатывает целое число N (0 ≤ N ≤ 255) по следующему алгоритму:

1. Строится восьмибитная двоичная запись числа N.
2. Все цифры двоичной записи заменяются на противоположные (0 на 1, 1 на 0).
3. Полученное число переводится в десятичную запись.
4. Из нового числа вычитается исходное, полученная разность выводится на экран.
  
Какое число нужно ввести в автомат, чтобы в результате получилось 45?

Ответ: 105
✍ Подробное решение (-> на страницу с теорией)

📹 Видео -> теоретическое решение
📹 Видеорешение на RuTube здесь -> теоретическое решение


Решение заданий для темы Проверка числовой последовательности (автомат)

5_7:

Автомат получает на вход четырёхзначное число. По этому числу строится новое число по следующим правилам.

  1. Складываются первая и вторая, а также третья и четвёртая цифры исходного числа.
  2. Полученные два числа записываются друг за другом в порядке убывания (без разделителей).

Пример. Исходное число: 3165. Суммы: 3 + 1 = 4; 6 + 5 = 11. Результат: 114.

Укажите наименьшее число, в результате обработки которого, автомат выдаст число 1311.

Ответ: 2949

✍ Подробное решение (-> на страницу с теорией)

📹 Видео -> теоретическое решение
📹 Видеорешение на RuTube здесь -> теоретическое решение


5_8:

Автомат получает на вход четырехзначное число. По нему строится новое число по следующим правилам:

  • Складываются первая и вторая, затем вторая и третья, а далее третья и четвёртая цифры исходного числа.
  • Полученные три числа записываются друг за другом в порядке возрастания (без разделителей).
  • Пример: Исходное число: 7531. Суммы: 7+5=12; 5+3=8; 3+1=4. Результат: 4812.

Укажите наибольшее число в результате обработки которого автомат выдаст число 2512.
  
Типовые задания для тренировки

Ответ: 9320

✍ Подробное решение (-> на страницу с теорией)

📹 Видео -> теоретическое решение
📹 Видеорешение на RuTube здесь -> теоретическое решение


5_9:

Автомат получает на вход два двузначных шестнадцатеричных числа. В этих числах все цифры не превосходят цифру 6 (если в числе есть цифра больше 6, автомат отказывается работать). По этим числам строится новое шестнадцатеричное число по следующим правилам:

  1. Вычисляются два шестнадцатеричных числа — сумма старших разрядов полученных чисел и сумма младших разрядов этих чисел.
  2. Полученные два шестнадцатеричных числа записываются друг за другом в порядке убывания (без разделителей).
  3. Пример: Исходные числа: 25, 66. Поразрядные суммы: 8, B. Результат: B8.

Какие из предложенных чисел могут быть результатом работы автомата?
Перечислите в алфавитном порядке буквы, соответствующие этим числам, без пробелов и знаков препинания.

Варианты:
A) 127
B) C6
C) BA
D) E3
E) D1

Ответ: BC
✍ Подробное решение (-> на страницу с теорией)
📹 Видео -> теоретическое решение
📹 Видеорешение на RuTube здесь -> теоретическое решение


5 задание ЕГЭ. Задание 4 ГВЭ 11 класс 2018 год ФИПИ

Автомат получает на вход два двузначных шестнадцатеричных числа. В этих числах все цифры не превосходят цифру 7 (если в числе есть цифра больше 7, автомат отказывается работать). По этим числам строится новое шестнадцатеричное число по следующим правилам.

1. Вычисляются два шестнадцатеричных числа: сумма старших разрядов полученных чисел и сумма младших разрядов этих чисел.
2. Полученные два шестнадцатеричных числа записываются друг за другом в порядке возрастания (без разделителей).

Пример. Исходные числа: 66, 43. Поразрядные суммы: A, 9. Результат: 9A.

Определите, какое из предложенных чисел может быть результатом работы автомата.

Варианты:
1) AD
2) 64
3) CF
4) 811

Ответ: 1

✍ Подробное решение (-> на страницу с теорией)

📹 Видео -> теоретическое решение
📹 Видеорешение на RuTube здесь -> теоретическое решение


5_15:

Автомат получает на вход натуральное число X. По этому числу строится трёхзначное число Y по следующим правилам:
1. Первая цифра числа Y (разряд сотен) – остаток от деления X на 7.
2. Вторая цифра числа Y (разряд десятков) – остаток от деления X на 2.
3. Третья цифра числа Y (разряд единиц) – остаток от деления X на 5.

Пример. Исходное число: 55. Остаток от деления на 7 равен 6; остаток от деления на 2 равен 1; остаток от деления на 5 равен 0. Результат работы автомата: 610.

  
Сколько существует двузначных чисел, при обработке которого автомат выдаёт результат 312?

Типовые задания для тренировки

Ответ: 2
✍ Подробное решение (-> на страницу с теорией)