Содержание:
Объяснение 5 задания
Уровень сложности — базовый,
Требуется использование специализированного программного обеспечения — нет,
Максимальный балл — 1,
Примерное время выполнения — 4 минуты.
Проверяемые элементы содержания: Формальное исполнение алгоритма, записанного на естественном языке, или умение создавать линейный алгоритм для формального исполнителя с ограниченным набором команд
"Как и в других заданиях базового уровня сложности, источником ошибок служит недостаточная внимательность и отсутствие или поверхностность самостоятельной проверки полученного ответа"
Проверка числовой последовательности на соответствие алгоритму
- для выполнения некоторых заданий необходимо повторить тему системы счисления;
- максимальное значение суммы цифр десятичного числа — это 18, так как 9 + 9 = 18;
- для проверки правильности переданного сообщения иногда вводится бит четности — дополнительный бит, которым дополняется двоичный код таким образом, чтобы в результате количество единиц стало четным: т.е. если в исходном сообщении количество единиц было четным, то добавляется 0, если нечетным — добавляется 1:
например: 310 = 112 после добавления бита четности: 110 ---- 410 = 1002 после добавления бита четности: 1001
например: 1112 - это 710 добавим 0 справа: 11102 - это 1410
Теперь будем рассматривать конкретные типовые экзаменационные варианты по информатике с объяснением их решения.
Разбор 5 задания
Задание демонстрационного варианта 2022 года ФИПИ
Плейлист видеоразборов задания на YouTube:
Решение задания про алгоритм, который строит число R
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
- Строится двоичная запись числа N.
- К этой записи дописываются справа ещё два разряда по следующему правилу:
- складываются все цифры двоичной записи числа N, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 11100 преобразуется в запись 111001;
- над этой записью производятся те же действия – справа дописывается остаток от деления суммы её цифр на 2.
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.
Укажите минимальное число R, которое превышает число 83 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.
- Заметим, что после второго пункта условия задачи получаются только четные числа (т.к. если число в двоичной системе заканчивается на 0, то оно четное). Таким образом, нас будут интересовать только четные числа.
- Наименьшим возможным числом, превышающим 83, является число 84. С ним и будем работать.
- Переведем 84 в двоичную систему счисления. На компьютерном ЕГЭ это можно сделать с помощью программистского режима калькулятора. Либо в консоли интерпретатора Python набрать
bin(84)
. Получим:
84 = 1010100
86 = 1010110
✎ Решение с использованием программирования:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | uses school; begin for var n := 1 to 70 do begin var r := bin(n); for var i := 1 to 2 do if r.CountOf('1') mod 2 = 0 then r := r + '0' else r := r + '1'; var r10 := dec(r, 2); if r10 > 83 then begin print(r10); break; end; end; end. |
Python:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | x_ = 1 while True: x = x_ sx = str(bin(x)) sx = sx[2:] if sx.count('1') % 2 == 0: sx+='0' else: sx+='1' if sx.count('1') % 2 == 0: sx+='0' else: sx+='1' x = int(sx, base=2) if x > 83 : print(x) break x_+=1 |
Результат: 86
📹 Видео -> решение с программированием
📹 Видеорешение на RuTube здесь
📹 Видео -> аналитическое решение
📹 Видеорешение на RuTube здесь -> аналитическое решение
На вход алгоритма подается натуральное число N. Алгоритм строит по нему новое число R следующим образом:
- Строится двоичная запись числа 4N.
- К этой записи дописываются справа еще два разряда по следующему правилу:
- складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа (справа). Например, запись 10000 преобразуется в запись 100001;
- над этой записью производятся те же действия — справа дописывается остаток от деления суммы цифр на 2.
Полученная таким образом запись является двоичной записью искомого числа R.
Укажите такое наименьшее число N, для которого результат работы алгоритма больше 129. В ответе это число запишите в десятичной системе счисления.
-
✎ Решение аналитическим способом:
- Заметим, что после выполнения второго пункта задания, будут получаться только четные числа! Наименьшим возможным четным числом, превышающим 129, является число 130. С ним и будем работать.
- Переведем 130 в двоичную систему счисления. Используя компьютер это можно сделать с помощью программистского режима калькулятора. Либо в консоли интерпретатора Python набрать
bin(130)
. Получим:
13010 = 100000102
в обратном порядке: было 1000001 -> стало 10000010 еще раз то же самое: было 100000 -> стало 1000001
int('100000',2)
.1000002 = 3210
✎ Решение с использованием программирования:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | uses school; begin var n_ := 1; while True do begin var n := 4*n_; var ost := bin(n).CountOf('1') mod 2; // остаток при делении на 2 n := 2 * n + ost; //в двоичной с.с. добавляем разряд (*2) и остаток к этому разряру (+ost) ost := bin(n).CountOf('1') mod 2; // остаток при делении на 2 n := 2 * n + ost; if n > 129 then begin println(n_); break end; n_ += 1; end; end. |
Python:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | n_ = 1 while True: n = 4*n_ r = str(bin(n)) r = r[2:] for i in range(2): if r.count('1') % 2 == 0: r+='0' else: r+='1' n = int(r, base=2) if n > 129: print(n_) break n_+=1 |
Результат: 8
Для более детального разбора предлагаем посмотреть видео теоретического решения данного 5 задания ЕГЭ по информатике:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь (теоретическое решение)
242
Алгоритм получает на вход натуральное число
N > 1
и строит по нему новое число R
следующим образом:1. Строится двоичная запись числа
N
.2. Подсчитывается количество нулей и единиц в полученной записи. Если их количество одинаково, в конец записи добавляется её последняя цифра. В противном случае в конец записи добавляется цифра, которая встречается реже.
3. Шаг 2 повторяется ещё два раза.
4. Результат переводится в десятичную систему счисления.
При каком наименьшем исходном числе N > 65
в результате работы алгоритма получится число, кратное 4?
-
✎ Решение с использованием программирования:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | uses school; begin var n_ := 1; while True do begin var n := n_; for var i := 1 to 3 do begin if bin(n).CountOf('1') = bin(n).CountOf('0') then // сравниваем if n mod 2 = 0 then // если четное, то в конце 0 n := 2 * n // добавляем разряд = 0 else n := 2 * n + 1 // иначе добавляем разряд = 1 else if bin(n).CountOf('1') > bin(n).CountOf('0') then n := 2 * n else n := 2 * n + 1 end; if (n_ > 65) and (n mod 4 = 0) then begin println(n_); break end; n_ += 1; end; end. |
Python:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | n_ = 1 while True: n = n_ r = str(bin(n)) r = r[2:] for i in range(3): if r.count('1') == r.count('0'): r+=r[-1] elif r.count('1')>r.count('0'): r+='0' else: r+='1' n = int(r, base=2) if n_ > 65 and n % 4 == 0 : print(n_,n) break n_+=1 |
Ответ: 79
267
На вход алгоритма подаётся натуральное число
N
. Алгоритм строит по нему новое число R
следующим образом.1) Число
N
переводим в двоичную запись.2) Инвертируем все биты числа кроме первого.
3) Переводим в десятичную запись.
4) Складываем результат с исходным числом
N
.Полученное число является искомым числом
R
.
Укажите наименьшее нечетное число N
, для которого результат работы данного алгоритма больше 99. В ответе это число запишите в десятичной системе счисления.
-
✎ Решение с использованием программирования:
1 |
Python:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | n_ = 1 while True: n = n_ r = str(bin(n)) r = r[2:] for i in range(1,len(r)): if r[i]== '0': r=r[:i]+'1'+r[i+1:] else: r=r[:i]+'0'+r[i+1:] n = int(r, base=2) n+=n_ if n > 99 and n_ % 2 != 0 : print(n_,n) break n_+=1 |
Ответ: 65
в1 2019
На вход алгоритма подается натуральное число N. Алгоритм строит по нему новое число R следующим образом:
1. Строится двоичная запись числа N.
2. К этой записи дописываются справа еще два разряда по следующему правилу:
— если N делится нацело на 4, в конец числа (справа) дописывается сначала ноль, а затем еще один ноль;
— если N при делении на 4 дает в остатке 1, то в конец числа (справа) дописывается сначала ноль, а затем единица;
— если N при делении на 4 дает в остатке 2, то в конец числа (справа) дописывается сначала один, а затем ноль;
— если N при делении на 4 дает в остатке 3, в конец числа (справа) дописывается сначала один, а затем еще одна единица.
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа R — результата работы данного алгоритма.
Укажите максимальное число R, которое меньше 100 и может являться результатом работы данного алгоритма. В ответе это число запишите в десятичной системе счисления.
Типовые задания для тренировки
-
✎ Решение аналитическим способом:
- Поскольку требуется найти наибольшее число, то возьмем наибольшее из возможных чисел, которые < 100 — это число 99. Переведем его в двоичную систему. На компьютерном ЕГЭ это можно сделать с помощью программистского режима калькулятора. Либо в консоли интерпретатора Python набрать
bin(99)
. Получим:
99 = 11000112
1100011 N
int('11000',2)
11000 = 2410
98 = 11000102 : 10 в конце добавлено алгоритмом N = 110002 = 2410 24 делится нацело на 4. По алгоритму в конце должно быть 00, а мы имеем 10 98 - не подходит 97 = 11000012 : 01 в конце добавлено алгоритмом N = 110002 = 2410 24 делится нацело на 4. По алгоритму в конце должно быть 00, а мы имеем 01 97 - не подходит 96 = 11000002 : 00 в конце добавлено алгоритмом N = 110002 = 2410 24 делится нацело на 4. По алгоритму в конце должно быть 00, у нас 00 - верно! 96 - подходит!
Результат: 96
Предлагаем посмотреть видео теоретического решения:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь (теоретическое решение)
138
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом:
1. Строится двоичная запись числа N.
2. К этой записи дописывается (дублируется) последняя цифра.
3. Затем справа дописывается бит чётности: 0, если в двоичном коде полученного числа чётное число единиц, и 1, если нечётное.
4. К полученному результату дописывается ещё один бит чётности.
Полученная таким образом запись (в ней на три разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.
Укажите минимальное число R, большее 114, которое может быть получено в результате работы этого алгоритма. В ответе это число запишите в десятичной системе.
-
✎ Решение аналитическим способом:
- В постановке задания задано R > 114. R — это результат работы алгоритма. Для того, чтобы определить наименьшее возможно N, переведем сначала 114 в двоичную систему счисления и выделим в нем три добавленные по алгоритму цифры (перевод можно выполнить в консоли Питона:
bin(114)
)
114 = 11100102
2. В полученное числе N = 1110 дублируется последняя цифра и получается 11100.
3. Поскольку число единиц (3) — нечетное, то справа добавляется 1: 111001.
4. Т.к. в полученном наборе цифр четное число единиц, то добавляем 0: 1110010
1. N = 1110 + 1 = 1111 Работа по алгоритму: 2. 11111 - дублирование последней цифры. 3. 111111 - справа дописываем единицу, т.к. в полученном числе 5 единиц (нечетное) 4. 1111110 - дописываем ноль, т.к. в полученном числе четное число единиц.
int('1111110',2)
):min R = 11111102 = 12610
✎ Решение с использованием программирования:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | uses school; begin var n_ := 1; while True do begin var n := n_; // дублирвание последней цифры if n mod 2 = 0 then // если четное, то в конце 0 n := 2 * n // добавляем разряд = 0 else n := 2 * n + 1; // иначе добавляем разряд = 1 for var i := 1 to 2 do begin if bin(n).CountOf('1') mod 2 = 0 then n := 2 * n // добавляем разряд = 0 else n := 2 * n + 1 // иначе добавляем разряд = 1 end; if n > 114 then begin println(n); break end; n_ += 1; end; end. |
Python:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | n_ = 1 while True: n = n_ r = str(bin(n)) # строковое значение r = r[2:] # убираем 0b r=r+r[-1] for i in range (2): if r.count('1') % 2 == 0: r = r+'0' else: r = r+'1' r = int(r,base = 2) # в 10-ю с.с. if r > 114: print(r) break n_+= 1 |
Результат: 126
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число следующим образом.
1) Строится двоичная запись числа N.
2) К этой записи дописываются справа ещё два разряда по следующему правилу:
— если N чётное, в конец числа (справа) дописываются два нуля, в противном случае справа дописываются две единицы.
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью числа – результата работы данного алгоритма.
Укажите минимальное число N, для которого результат работы алгоритма будет больше 134. В ответе это число запишите в десятичной системе счисления.
Ответ: 33
Видео -> теоретическое решение
📹 Видеорешение на RuTube здесь -> теоретическое решение
135
На вход алгоритма подаётся натуральное число N
. Алгоритм строит по нему новое число R следующим образом.
1) Строится двоичная запись числа N
.
2) Складываются все цифры двоичной записи числа. Если сумма четная, то в конец числа (справа) дописывается 1, а если нечетная, то дописывается 0.
3) К полученному результату применяется еще раз пункт 2 этого алгоритма.
Полученная таким образом запись (в ней на два разряда больше, чем в записи исходного числа N
) является двоичной записью искомого числа R
.
Укажите количество чисел R
, которые могут быть получены в результате работы этого алгоритма, и лежат в диапазоне 16 ≤ R ≤ 32.
Ответ: 5
159
Автомат обрабатывает целое число N (0 ≤ N ≤ 255) по следующему алгоритму:
1. Строится восьмибитная двоичная запись числа N.
2. Все цифры двоичной записи заменяются на противоположные (0 на 1, 1 на 0).
3. Полученное число переводится в десятичную запись.
4. Из нового числа вычитается исходное, полученная разность выводится на экран.
Какое число нужно ввести в автомат, чтобы в результате получилось 45?
✎ Решение аналитическим способом:
- Результатом выполнения алгоритма является число 45. Алгоритм работает в двоичной системе счисления, поэтому переведем число:
45 = 001011012
1 - 0
, с учетом, что у разряда с единицей заняли. То есть бит:. _ 1 _ _ _ _ _ _ _ N инвертируемое = 0 _ _ _ _ _ _ _ N исходное 0 0 1 0 1 1 0 1 = 45 результат
1 - 0
не может в результате дать 0, так как у следующей слева единицы мы заняли. Значит, 0 - 1
. Чтобы не получить единицу в ответе, необходимо у нуля тоже занять:. . _ 1 0 _ _ _ _ _ _ = 0 1 _ _ _ _ _ _ 0 0 1 0 1 1 0 1 = 45 результат
1 - 0
не может быть, так как у следующего слева нуля мы заняли.Значит
0 - 1
. То есть как раз чтобы получить единицу (10 - 1 = 1
), занимаем у следующих слева разрядов:. . _ 1 0 0 _ _ _ _ _ = 0 1 1 _ _ _ _ _ 0 0 1 0 1 1 0 1 = 45 результат
0 - 1
не может быть. Значит, чтобы получить в результате ноль, берем 1 - 0
, у единицы должно быть занято.. . . _ 1 0 0 1 _ _ _ _ = 0 1 1 0 _ _ _ _ 0 0 1 0 1 1 0 1 = 45 результат
1 - 0
не может быть. Так как слева у единицы занято. Значит, чтобы получить в результате 1, берем 0 - 1
:. . . _ 1 0 0 1 0 _ _ _ = 0 1 1 0 1 _ _ _ 0 0 1 0 1 1 0 1 = 45 результат
0 - 1
не даст в ответе единицу, значит, имеем 1 - 0
:. . . _ 1 0 0 1 0 1 _ _ = 0 1 1 0 1 0 _ _ 0 0 1 0 1 1 0 1 = 45 результат
0 - 1
не может быть, значит, 1 - 0
. Чтобы получить в результате 0, необходимо, чтобы у 1 было занято:. . . . _ 1 0 0 1 0 1 1 _ = 0 1 1 0 1 0 0 _ 0 0 1 0 1 1 0 1 = 45 результат
0 - 1
:. . . . _ 1 0 0 1 0 1 1 0 = 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 = 45 результат
01101001 = 10510
Ответ: 105
Смотрите теоретический разбор задания на видео и подписывайтесь на наш канал:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь -> теоретическое решение
Решение заданий для темы Проверка числовой последовательности (Автомат)
06
Автомат получает на вход четырёхзначное число. По этому числу строится новое число по следующим правилам.
- Складываются первая и вторая, а также третья и четвёртая цифры исходного числа.
- Полученные два числа записываются друг за другом в порядке убывания (без разделителей).
Пример. Исходное число: 3165. Суммы: 3 + 1 = 4; 6 + 5 = 11. Результат: 114.
Укажите наименьшее число, в результате обработки которого, автомат выдаст число 1311.
Результат: 2949
Процесс теоретического решения данного 5 задания представлен в видеоуроке:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь -> теоретическое решение
2017
Автомат получает на вход четырехзначное число. По нему строится новое число по следующим правилам:
- Складываются первая и вторая, затем вторая и третья, а далее третья и четвёртая цифры исходного числа.
- Полученные три числа записываются друг за другом в порядке возрастания (без разделителей).
Пример: Исходное число: 7531. Суммы: 7+5=12; 5+3=8; 3+1=4. Результат: 4812.
Укажите наибольшее число в результате обработки которого автомат выдаст 2512.
Типовые задания для тренировки
-
✎ Решение аналитическим способом:
- Число 2512 можно разбить на
2
,5
,12
- Начнем с 12. Необходимо получить наибольшее число, поэтому разобьем на слагаемые с наибольшей цифрой —
9
:
12=9+3
93**
9320
.Результат: 9320
Подробное теоретическое решение данного 5 задания можно просмотреть на видео:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь -> теоретическое решение
2017
Автомат получает на вход два двузначных шестнадцатеричных числа. В этих числах все цифры не превосходят цифру 6 (если в числе есть цифра больше 6, автомат отказывается работать). По этим числам строится новое шестнадцатеричное число по следующим правилам:
- Вычисляются два шестнадцатеричных числа — сумма старших разрядов полученных чисел и сумма младших разрядов этих чисел.
- Полученные два шестнадцатеричных числа записываются друг за другом в порядке убывания (без разделителей).
Пример: Исходные числа: 25, 66. Поразрядные суммы: 8, B. Результат: B8.
Какие из предложенных чисел могут быть результатом работы автомата?
Перечислите в алфавитном порядке буквы, соответствующие этим числам, без пробелов и знаков препинания.
Варианты:
A) 127
B) C6
C) BA
D) E3
E) D1
Проанализируем все варианты:
12
в шестнадцатеричной системе записывается как С
.С6
разбиваем на 12
и 6
. Число может быть результатом работы автомата. Исходные числа, например, 35
и 37
BA
разбиваем на 11
и 10
. Число может быть результатом работы автомата. Исходные числа, например, 55
и 56
E3
разбиваем на 14
и 3
. 14=6+8
, но цифры большие 6 не принимает автомат. Не подходит.D1
разбиваем на 13
и 1
. 13=6+7
, но цифры большие 6 не принимает автомат. Не подходит.Результат: BC
Подробное теоретическое решение данного 5 задания можно просмотреть на видео:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь -> теоретическое решение
Автомат получает на вход два двузначных шестнадцатеричных числа. В этих числах все цифры не превосходят цифру 7 (если в числе есть цифра больше 7, автомат отказывается работать). По этим числам строится новое шестнадцатеричное число по следующим правилам.
1. Вычисляются два шестнадцатеричных числа: сумма старших разрядов полученных чисел и сумма младших разрядов этих чисел.
2. Полученные два шестнадцатеричных числа записываются друг за другом в порядке возрастания (без разделителей).
Пример. Исходные числа: 66, 43. Поразрядные суммы: A, 9. Результат: 9A.
Определите, какое из предложенных чисел может быть результатом работы автомата.
Варианты:
1) AD
2) 64
3) CF
4) 811
Результат: 1
Теоретическое решение 4 задания ГВЭ 11 класса смотрите на видео:
📹 YouTube здесь
📹 Видеорешение на RuTube здесь -> теоретическое решение
109
Автомат получает на вход натуральное число X. По этому числу строится трёхзначное число Y по следующим правилам:
1. Первая цифра числа Y (разряд сотен) – остаток от деления X на 7.
2. Вторая цифра числа Y (разряд десятков) – остаток от деления X на 2.
3. Третья цифра числа Y (разряд единиц) – остаток от деления X на 5.
Сколько существует двузначных чисел, при обработке которого автомат выдаёт результат 312?
- Обозначим каждую цифру числа Y согласно заданию:
Y = 3 1 2 x mod 7 x mod 2 x mod 5
1. x mod 2 = 1 => значит, X — нечетное число
2. x mod 5 = 2 => значит, X — либо ?2, либо ?7.
3. раз x — нечетное, то из пред. пункта получаем x = ?7
4. x mod 7 = 3 => переберем все варианты:
97 - не подходит, 87 - подходит (87 / 7 = 12, остаток = 3) 77 - не подходит, 67 - не подходит, 57 - не подходит, 47 - не подходит, 37 - не подходит, 27 - не подходит, 17 - подходит (17 / 7 = 2, остаток = 3)
Результат: 2
Нет задачи такого типа подскажите как решить пж
Автомат обрабатывает натуральное число N по следующему алгоритму:
1. Строится двоичная запись числа N.
2. Удаляется первая слева единица и все следующие непосредственно за ней нули. Если после этого в числе не остаётся цифр, результат этого действия считается равным нулю.
3. Полученное число переводится в десятичную запись.
4. Новое число вычитается из исходного, полученная разность выводится на экран.
Пример. Дано число N = 11. Алгоритм работает следующим образом.
1. Двоичная запись числа N: 1011.
2. Удаляется первая единица и следующий за ней ноль: 11.
3. Десятичное значение полученного числа 3.
4. На экран выводится число 11 – 3 = 8.
Сколько разных значений будет показано на экране автомата при последовательном вводе всех натуральных чисел от 100 до 3000?