Разбор 2 задания ЕГЭ по информатике

На уроке рассматривается разбор 2 задания ЕГЭ по информатике, дается подробное объяснение того, как решать подобные задачи

Объяснение задания 2 ЕГЭ по информатике

2-я тема характеризуется, как задания базового уровня сложности, время выполнения – примерно 3 минуты, максимальный балл — 1

Таблицы истинности и порядок выполнения логических операций

Для логических операций приняты следующие обозначения:
¬ A, A не A (отрицание, инверсия)
A ∧ B, A ⋅ B A и B (логическое умножение, конъюнкция)
A ∨ B, A + B A или B (логическое сложение, дизъюнкция)
A → B импликация (следование)
A ↔ B, A ≡ B, A ∼ B эквиваленция (эквивалентность, равносильность)
A ⊕ B сложение по модулю 2 (XOR)
Егифка ©:

теория таблицы истинности

Отрицание (НЕ):
Таблица истинности операции НЕ

Таблица истинности операции НЕ

Конъюнкция (И):
Таблица истинности операции И (конъюнкция)

Таблица истинности операции И (конъюнкция)

Дизъюнкция (ИЛИ):
Таблица истинности операции ИЛИ (дизъюнкция)

Таблица истинности операции ИЛИ (дизъюнкция)

Импликация (если…, то…):
Таблица истинности операции Импликация (если..., то...)

Таблица истинности операции Импликация (если…, то…)

Эквивалентность (тогда и только тогда, …):
Таблица истинности операции Эквивалентность (тогда и только тогда, ...)

Таблица истинности операции Эквивалентность (тогда и только тогда, …)

Сложение по модулю 2 (XOR):
A B A ⊕ B
0 0 0
0 1 1
1 0 1
1 1 0
Порядок выполнения операций:
  • если нет скобок, сначала выполняются все операции «НЕ», затем – «И», затем – «ИЛИ», импликация, равносильность
Еще о логических операциях:
  • логическое произведение X∙Y∙Z∙… равно 1, т.е. выражение является истинным, только тогда, когда все сомножители равны 1 (а в остальных случаях равно 0)
  • логическая сумма X+Y+Z+… равна 0, т.е. выражение является ложным только тогда, когда все слагаемые равны 0 (а в остальных случаях равна 1)

О преобразованиях логических операций читайте здесь.

Егифка ©:

решение 2 задания ЕГЭ

Решение заданий 2 ЕГЭ по информатике


Задание 2_2: Задание 2 ЕГЭ по информатике 2017 ФИПИ вариант 11 (Крылов С.С., Чуркина Т.Е.):

Каждое из логических выражений F и G содержит 5 переменных. В табл. истинности для F и G есть ровно 5 одинаковых строк, причем ровно в 4 из них в столбце значений стоит 1.

Сколько строк таблицы истинности для F ∨ G содержит 1 в столбце значений?

Подобные задания для тренировки


✍ Решение:

  • Поскольку в каждом из выражений присутствует 5 переменных, то эти 5 переменных порождают таблицу истинности из 32 строк: т.к. каждая из переменных может принимать оно из двух значений (0 или 1), то различных вариантов с пятью переменными будет 25=32, т.е. 32 строки.
  • Из этих 32 строк и для F и для G мы знаем наверняка только о 5 строках: 4 из них истинны (=1), а одна ложна (=0).
  • Вопрос стоит о количестве строк = 1 для таб. истинности F ∨ G. Данная операция — дизъюнкция, которая ложна только в одном случае — если F = 0 и одновременно G = 0
  • В исходных таблицах для F и G мы знаем о существовании только одного 0, т.е. в остальных строках может быть 1. Т.о., и для F и для G в 31 строке могут быть единицы (32-1=31), а лишь в одной — ноль.
  • Тогда для F ∨ G только в одном случае будет 0, когда и F = 0 и G = 0:
  • F G F ∨ G
    1 0 0 0
    2 0 1 1
    1
    32 1
  • Соответственно, истинными будут все остальные строки:
  • 32 - 1 = 31

Результат: 31

Подробное объяснение данного задания смотрите на видео:



Задание 2_6: Решение 2 задания ЕГЭ по информатике (К. Поляков, вариант 89):

Каждое логическое выражение A и B зависит от одного и того же набора из 7 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 4 единицы.

Каково максимально возможное число единиц в столбце значений таблицы истинности выражения A ∨ B?


✍ Решение:

  • Полная таблица истинности для каждого из выражений A и B состоит из 27 = 128 строк.
  • В четырех из них результат равен единице, значит в остальных — 0.
  • A ∨ B истинно в том случае, когда либо A = 1 либо B = 1, или и A и B = 1.
  • Поскольку А = 1 только в 4 случаях, то чтобы получить максимальное количество единиц в результирующей таблице истинности (для A ∨ B), расположим все единицы т.и. для выражения A так, чтобы они были в строках, где B = 0, и наоборот, все строки, где B = 1, поставим в строки, где A = 0:
  • A B
    1 0
    1 0
    1 0
    1 0
    0 1
    0 1
    0 1
    0 1
    0 0
  • Итого получаем 8 строк.
  • Если бы в задании требовалось найти минимальное количество единиц, то мы бы совместили строки со значением = 1, и получили бы значение 4.

Результат: 8



Задание 2_7: Решение 2 задания ЕГЭ по информатике (К. Поляков, вариант 91):

Каждое логическое выражение A и B зависит от одного и того же набора из 8 переменных. В таблицах истинности каждого из этих выражений в столбце значений стоит ровно по 6 единиц.

Каково максимально возможное число нулей в столбце значений таблицы истинности выражения A ∧ B?


✍ Решение:

  • Полная таблица истинности для каждого из выражений A и B состоит из 28 = 256 строк.
  • В шести из них результат равен единице, значит в остальных — 0.
  • A ∧ B ложно в том случае, когда:
    A ∧ B = 0 если:
    
    1. A = 0, B = 1 
    2. B = 0, A = 1
    3. A = 0 и B = 0
    
  • Во всех случаях там где А=1 может стоять B=0, и тогда результат F = 0. Поскольку нам необходимо найти максимально возможное число нулей, то как раз для всех шести А=1 сопоставим B=0, и наоборот, для всех шести возможных B=1 сопоставим A=0
  • A B F
    1 0 0
    1 0 0
    1 0 0
    1 0 0
    0 1 0
    0 1 0
    0 1 0
    0 1 0
    0 0 0
  • Поскольку строк всего 256, то вполне возможно, что все 256 из них возвратят в результате 0

Результат: 256



Задание 2_4: 2 задание. ГВЭ 11 класс по информатике 2018 (ФИПИ):

Дан фрагмент таблицы истинности выражения F.

x1 x2 x3 x4 x5 x6 x7 F
1 0 0 1 1 1 1 0
0 1 0 0 1 0 1 1
0 1 0 1 1 0 1 0

Каким из приведённых ниже выражений может быть F?
1) ¬x1 ∧ x2 ∧ ¬x3 ∧ ¬x4 ∧ x5 ∧ ¬x6 ∧ x7
2) x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ ¬x6 ∨ ¬x7
3) x1 ∧ ¬x2 ∧ x3 ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7
4) x1 ∨ ¬x2 ∨ x3 ∨ x4 ∨ ¬x5 ∨ ¬x6 ∨ x7


✍ Решение:

  • В первом внешняя операция (выполняется последней) — конъюнкция. Начнем рассмотрение с нее. Соответственно, проверяем по второй строке таб. ист-ти, там где F = 1, так как в таком случае все аргументы должны быть истинными (см. таб. истинности для конъюнкции).
  • Если мы подставим в нее все аргументы выражения, то функция действительно возвращает истину. Т.е. пункт первый подходит:
  • гвэ 11 класс решение задания 2

  • Но проверим на всякий случай остальные.
  • Второй пункт проверяем по первой и третьей строке, так как основная операция — дизъюнкция — ложна только в том случае, если все аргументы ложны (см. таб. истинности для дизъюнкции). Проверяя по первой строке, сразу видим, что x1 в ней равен 1. В таком случаем функция будет = 1. Т.е. этот пункт не подходит:
  • информатика гвэ, решение 2 задания

  • Третий пункт проверяем по второй строке, так как основная операция — конъюнкция — возвратит истину только тогда, когда все операнды равны 1. Видим, что x1 = 0, соответственно функция будет тоже равна 0. Т.е. выражение нам не подходит:
  • гвэ 11 класс

  • Четвертый пункт проверяем по первой и третьей строкам. В первой — x1 = 1, т.е. функция должна быть равна 1. Т.е. пункт тоже не подходит:
  • разбор 2 задания гвэ

  • Таким образом, ответ равен 1.

Результат: 1

Решение 2 задания ГВЭ по информатике смотрите на видео:



Задание 2_8: Решение 2 задания ЕГЭ по информатике (К. Поляков, вариант 58):

Дано логическое выражение, зависящее от 5 логических переменных:

(¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ x5) ∧ (x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5)

Сколько существует различных наборов значений переменных, при которых выражение истинно?

1) 0
2) 30
3) 31
4) 32

Подобные задания для тренировки


✍ Решение:

  • Поскольку выражение включает 5 переменных, то таб. ист-ти состоит из 25 = 32 строк.
  • Внешней операцией (последней) является конъюнкция (логическое умножение), а внутри скобок — дизъюнкция (логическое сложение).
  • Обозначим первую скобку за А, а вторую скобку за B. Получим A ∧ B.
  • Найдем сколько нулей существует для таб. истинности:
  •    A  B  F
    1. 0  0  0
    2. 0  1  0
    3. 1  0  0
    

    Теперь рассмотрим каждый случай отдельно:

  • 1 случай. 0 0 : A = 0 и B = 0, то есть:
  • ¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ x5 = 0
    и
    x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 = 0.

  • Обратим внимание, что во вторых скобках везде стоит инверсия переменных, которые находятся в первых скобках. Таким образом, это невозможно, так как дизъюнкция равна нулю, когда все операнды равны нулю. А если в первых скобках все 0, то из-за инверсий во вторых скобках все 1. То есть этот случай нам не подходит.
  • 2 случай. 0 1 : нам он подходит, так как если первая скобка возвратит 0, то вторая вернет 1.
  • 3 случай. 1 0 : нам он подходит, так как если вторая скобка возвратит 0, то первая вернет 1.
  • Итого получаем два случая, когда исходное выражение вернет 0, т.е. две строки таблицы истинности.
  • Тогда получим количество строк, с результатом равным 1:
  • 32 - 2 = 30, что соответствует номеру 2
    

Результат: 2

Подробное решение задания смотрите в видеоуроке:



Задание 2_5: Решение 2 задания ЕГЭ по информатике (К. Поляков, вариант 76):

Дан фрагмент таблицы истинности для выражения F:

x1 x2 x3 x4 x5 x6 F
0 0 1 1 0 0 1
0 0 0 0 1 1 1
1 0 1 0 1 1 1
0 1 1 1 0 1 0

Укажите максимально возможное число различных строк полной таблицы истинности этого выражения, в которых значение x3 не совпадает с F.

Подобные задания для тренировки


✍ Решение:

  • Полная таблица истинности будет иметь 26 = 64 строк (т.к. 6 переменных).
  • 4 из них нам известны: в них x3 два раза не совпадает с F.
  • Неизвестных строк:
  •  
    64 - 4 = 60
    
  • В неизвестных x3 может не совпадать с F, кроме того, в двух известных x3 не совпадает с F. Соответственно максимально возможное число строк с несовпадающими x3 и F, будет:
  • 60 + 2 = 62
    

Результат: 62



Задание 2_9: Решение 2 задания ЕГЭ по информатике (К. Поляков вариант 112):

Дан фрагмент таблицы истинности для выражения F:

x1 x2 x3 x4 x5 x6 x7 F
0 0 0
0 0 1
1 1 1

Каким выражением может быть F?
1) x1 ∧ (x2 → x3) ∧ ¬x4 ∧ x5 ∧ x6 ∧ ¬x7
2) x1 ∨ (¬x2 → x3) ∨ ¬x4 ∨ ¬x5 ∨ x6 ∨ ¬x7
3) ¬x1 ∧ (x2 → ¬x3) ∧ x4 ∧ ¬x5 ∧ x6 ∧ x7
4) ¬x1 ∨ (x2 → ¬x3) ∨ x4 ∨ x5 ∨ x6 ∧ x7


✍ Решение:

  • Рассмотрим отдельно каждый пункт и найдем последнюю операцию, которая должна быть выполнена (внешнюю).
  • 1 пункт:

    (((x1 ∧ (x2 → x3) ∧  ¬x4) ∧ x5) ∧ x6)  ¬x7
    
  • Внешняя операция — конъюнкция. Ее проще проверять по строке, в которой F = 1 (значит все сомножители должны быть равны 1).
  • Возьмем 3-ю строку, в ней x4=1. В нашем выражении х4 с отрицанием, т.е. = 0. Для конъюнкции, когда хоть один из сомножителей равен нулю, выражение вернет в результате 0, а у нас в строке 1. Т.е. этот пункт не подходит:
  • пример решения 2 задания егэ
    2 пункт:

    (((x1 ∨ (¬x2 → x3) ∨  ¬x4) ∨ ¬x5) ∨ x6)   ¬x7
    
  • Последняя выполняющаяся операция (внешняя) — дизъюнкция. Ее легче проверять по строке, в которой F = 0 (значит все слагаемые должны быть равны 0).
  • Смотрим по первой строке: х4 = 0, в рассматриваемом пункте он с отрицанием, т.е. = 1. Соответственно все выражение вернет единицу, а в таблице в строке 0. Т.е. этот пункт не подходит:
  • решение задания 2 егэ
    3 пункт:

    (((¬x1 ∧ (x2 → ¬x3) ∧  x4) ∧ ¬x5) ∧ x6)  x7
    
  • Последняя операция — конъюнкция. Ее проще проверять по строке, в которой F = 1 (значит все сомножители должны быть равны 1).
  • Возьмем 2-ю строку: в ней х7 = 0, в рассматриваем пункте х7 без отрицания, т.е. так и остается равным нулю. При умножении выражение вернет в результате 0. В таблице — 1. Т.е. пункт тоже не подходит:
  • Как решать 2 задание

  • Единственным подходящим вариантом остался пункт под номером 4 (на всякий случай всегда стоит проверить и его).

Результат: 4

В видеоуроке рассмотрено подробное решение 2 задания:



Задание 2_1: Задание 2 ЕГЭ по информатике 2017 ФИПИ вариант 6 (Крылов С.С., Чуркина Т.Е.):

Логическая функция F задается выражением
(y → x) ∧ (y → z) ∧ z.

Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

Перем. 1 Перем. 2 Перем. 3 F
??? ??? ??? F
1 0 0 0 0
2 0 0 1 0
3 0 1 0 1
4 0 1 1 1
5 1 0 0 0
6 1 0 1 0
7 1 1 0 0
8 1 1 1 1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.


✍ Решение:

  • Сначала необходимо рассмотреть логическую операцию, которую мы будем выполнять в последнюю очередь — это логическое И (конъюнкция) или . То есть внешнюю операцию:
  • (y → x) ∧ (y → z)  z
    
  • Конъюнкцию легче рассматривать по тем строкам таб. ист-ти, в которых F = 1, т.е. №3, №4, и №8
  • Поскольку для конъюнкции функция истинна только тогда, когда все переменные истинны, то необходимо чтобы отдельно каждая скобка была истинна ((y → x) = 1 и (y → z)=1) и переменная z тоже была истинной (=1)
  • (y → x) ∧ (y → z) ∧ z = 1
       если: 
    1. (y → x) = 1
    2. (y → z) = 1
    3. z = 1
    
  • Поскольку с выражениями в скобках сложней работать, определим сначала какому столбцу соответствует z. Для этого выберем строку (№3), где F = 1, а в остальных ячейках только одна единица, остальные — нули.
  • Перем. 1 Перем. 2 Перем. 3 F
    3 0 1 0 1
  • Таким образом, делаем вывод, что z находится во втором столбце (отсчет ведем слева):
  • Перем. 1 Перем. 2 Перем. 3 F
    _ ??? z ??? F
  • Дальше нам необходимо рассмотреть две скобки, в которых находится операция импликации: (y → x) и (y → z). Обе эти скобки должны возвращать истину (=1). В таб. истинности для импликации, функция возвращает в результате 1 тогда, когда:
  • вторая переменная (заключение) равна 1 (первая при этом может быть любой),
  • вторая переменная (заключение) равна 0, а первая обязательно должна быть равна тоже 0.
  • Рассмотрим скобку (y → x) и строку 4 таблицы:
  • Перем. 1 z Перем. 3 F
    4 0 1 1 1
  • Для этой строки только y может быть равен 0, т.к. если x = 0, тогда y=1, и скобка в результате возвратит ложь (1 → 0 = 0). Соответственно, y находится в первом столбце. А x значит должен стоять в третьем:
  • y z x F

Результат: yzx

Детальный разбор данного задания 2 ЕГЭ по информатике предлагаем посмотреть в видео:



Задание 2_10: Решение 2 задания ЕГЭ по информатике (диагностический вариант экзаменационной работы 2018 года, С.С. Крылов, Д.М. Ушаков):

Логическая функция F задается выражением

¬a ∧ b ∧ (c ∨ ¬d)

Ниже приведен фрагмент таблицы истинности функции F, содержащей все наборы аргументов, при которых функция F истинна.

Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a, b, c, d.

Перем.1 Перем.2 Перем.3 Перем.4 F
??? ??? ??? ??? F
0 1 0 0 1
1 1 0 0 1
1 1 0 1 1

В ответе запишите буквы в том порядке, в котором идут соответствующие им столбцы.


✍ Решение:

Результат: cbad

Предлагаем подробный разбор посмотреть на видео:



Задание 2_11: Решение 2 задания ЕГЭ по информатике (Задание № 169 К. Поляков):

Логическая функция F задается выражением

(¬x ∨ y ∨ z) ∧ (x ∨ ¬z ∨ ¬w)

Ниже приведен фрагмент таблицы истинности функции F, содержащей все наборы аргументов, при которых функция F ложна.

Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.

Перем.1 Перем.2 Перем.3 Перем.4 F
??? ??? ??? ??? F
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 1 0 0 0

В ответе запишите буквы в том порядке, в котором идут соответствующие им столбцы.


✍ Решение:

  • Внешняя операция выражения — конъюнкция (). Во всех указанных строках таблицы истинности функция принимает значение 0 (ложь). Конъюнкция ложна аж в трех случаях, поэтому проверить на ложь очень затруднительно. Тогда как конъюнкция истинна (= 1) только в одном случае: когда все операнды истинны. Т.е. в нашем случае:
  • (¬x ∨ y ∨ z) ∧ (x ∨ ¬z ∨ ¬w) = 1 когда:
    1. (¬x ∨ y ∨ z) = 1 
    И 
    2. (x ∨ ¬z ∨ ¬w) = 1
    
  • Общая идея дальнейшего решения такова: поскольку внешняя операция — конъюнкция, и результат ее истинен, когда оба сомножителя в скобках будут истинны (=1), то нам необходимо сначала составить все наборы таблицы истинности для обоих сомножителей в скобках. Затем, так как конъюнкция подразумевает пересечение, необходимо сопоставить обе таблицы истинности и выбрать для каждого подходящего набора первого сомножителя подходящий (подходящие) набор (наборы) второго сомножителя. НО! так как у нас в задании известны только наборы для F = 0, то мы сопоставлять будем наборы, которые возвращают ложь. Теперь подробно.
  • Разобъем исходное выражение на две части и составим таблицу истинности отдельно для двух частей.
  • Для сомножителя (¬x ∨ y ∨ z):
  • x y z результат
    0 0 0 1
    0 0 1 1
    0 1 0 1
    0 1 1 1
    1 0 0 0
    1 0 1 1
    1 1 0 1
    1 1 1 1
  • Получили ложь в одном наборе, так как дизъюнкция () ложна только тогда, когда ложны все операнды.
  • Для сомножителя (x ∨ ¬z ∨ ¬w):
  • x z w результат
    0 0 0 1
    0 0 1 1
    0 1 0 1
    0 1 1 0
    1 0 0 1
    1 0 1 1
    1 1 0 1
    1 1 1 1
  • Соответственно, опять получили ложь в одном наборе, когда ложны все операнды.
  • Учтем, что нам нужно выбрать и «пересечь» (так как внешняя операция ) из всех наборов только те, которые возвращают ложь (так как по заданию известны только строки, где F = 0):
  • Решение 2 задания ЕГЭ по информатике

  • Выпишем только пересеченные наборы:
  • x y z w F
    0 0 1 1 0
    0 1 1 1 0
    1 0 0 0 0
    1 0 0 1 0
  • Сравнив вторую строку заданной таблицы и вторую строку получившейся таблицы, находим, что x находится в первом столбце.
  • x y z w F
    0 0 1 1 0
    0 1 1 1 0
    1 0 0 0 0
    1 0 0 1 0
    x ??? ??? ??? F
    0 1 1 0 0
    0 1 1 1 0
    1 0 0 0 0
    1 1 0 0 0
  • Сравнив первую и четвертую одинаковые строки получившейся таблицы, находим, что y в обоих случаях равен 0. Значит он находится в 4-м столбце.
  • x y z w F
    0 0 1 1 0
    0 1 1 1 0
    1 0 0 0 0
    1 0 0 1 0
    x ??? ??? y F
    0 1 1 0 0
    0 1 1 1 0
    1 0 0 0 0
    1 1 0 0 0
  • Сравнив предпоследнюю и последнюю строки получившейся таблицы, там где x = 1, находим, что z в обоих случаях равен 0, тогда как w принимает значение и 1 и 0. Значит z находится в 3-м столбце.
  • x y z w F
    0 0 1 1 0
    0 1 1 1 0
    1 0 0 0 0
    1 0 0 1 0
  • Для w остается второй столбец:
  • x w z y F
    0 1 1 0 0
    0 1 1 1 0
    1 0 0 0 0
    1 1 0 0 0

Результат: xwzy

Видео решения 169 задания К.Полякова:



Задание 2_3: Решение задания 2. Демоверсия ЕГЭ 2018 информатика:

Логическая функция F задаётся выражением ¬x ∨ y ∨ (¬z ∧ w).
На рисунке приведён фрагмент таб. ист-ти функции F, содержащий все наборы аргументов, при которых функция F ложна.
Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных w, x, y, z.

Перем. 1 Перем. 2 Перем. 3 Перем. 4 F
??? ??? ??? ??? F
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0

В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала – буква, соответствующая первому столбцу; затем – буква, соответствующая второму столбцу, и т.д.) Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

Подобные задания для тренировки


✍ Решение:

  • Внешним действием (последним выполняемым) в исходном выражении является дизъюнкция:
  • ¬x  y  (¬z ∧ w)
  • Вспомним таб. ист-ти для дизъюнкции (логическое сложение):
  • x1 x2 F
    0 0 0
    0 1 1
    1 0 1
    1 1 1
  • Чтобы исходное выражение было истинным, нужно, чтобы хотя бы один из операндов равнялся единице. Т.е. нельзя наверняка сказать, где будет 1, а где 0 (¬x = 1 или 0, y = 1 или 0, ¬z ∧ w = 1 или 0).
  • Функция же ложна только в одном случае, — когда все операнды ложны. Поэтому будем искать по признаку лжи.
  • В исходной таблице истинности во всех строках функция ложна. Чтобы понять в каком столбце должна находиться та или иная переменная, возьмем за основу строку, в которой только одна единица или только один нуль.
  • Строка №1: в ней одна единица — первый столбец. В исходной формуле, чтобы функция была ложна, необходимо, чтобы ¬x = 0, иными словами x = 1. Значит первый столбец соответствует переменной x.
  • Перем. 1 Перем. 2 Перем. 3 Перем. 4 F
    x ??? ??? ??? F
    1 0 0 0 0
  • Строка №3: в ней один нуль — четвертый столбец. В исходной формуле, чтобы функция была ложна, необходимо, чтобы y = 0. Значит четвертый столбец соответствует переменной y.
  • Перем. 1 Перем. 2 Перем. 3 Перем. 4 F
    x ??? ??? y F
    1 1 1 0 0
  • Строка №2: в ней второй столбец равен единице, а третий — нулю. В исходном выражении ¬z ∧ w должно равняться 0, чтобы функция была ложной. Конъюнкция истинна только тогда, когда оба операнда истинны (=1); в нашем случае функция должна быть ложной, но пойдем от обратного. Если ¬z = 1, т.е. z = 0, а w = 1, то это неверно для нашего случая. Значит всё должно быть наоборот: z = 1, а w = 0. Таким образом столбец второй соответствует z, а столбец третий — w.
  • x z w y F
    1 0 0 0 0
    1 1 0 0 0
    1 1 1 0 0

Результат: xzwy

Подробное решение данного 2 задания из демоверсии ЕГЭ 2018 года смотрите на видео:



Задание 2_12: Разбор 2 задания ЕГЭ вариант № 4, 2019 Информатика и ИКТ Типовые экзаменационные варианты (10 вариантов), С.С. Крылов, Т.Е. Чуркина:

Миша заполнял таблицу истинности функции:

(¬z ∧ ¬(x ≡ y)) → ¬(y ∨ w)

но успел заполнить лишь фрагмент из трех различных ее строк, даже не указав, какому столбцу таблицы соответствует каждая из переменных w, x, y, z:

Перем.1 Перем.2 Перем.3 Перем.4 F
??? ??? ??? ??? F
1 1 0
1 0 0
1 1 0 0

Определите, какому столбцу таблицы соответствует каждая из переменных x, y, z, w.

В ответе напишите буквы w, x, y, z в том порядке, в котором идут соответствующие им столбцы.

Подобные задания для тренировки

✍ Решение:
 

  • Решим задание методом построения полной таблицы истинности.
  • Посчитаем общее количество строк в таблице истинности и построим ее:
  • 4 переменных -> 24 = 16 строк
    

    полная таблица истинности

  • Для начала упростим выражение и выделим в нем две основные части относительно внешней операции (операция, которая выполняется последней).
  • (¬z ∧ ¬(x ≡ y)) → ¬(y ∨ w)
    1. Избавимся от импликации:
    ¬(¬z ∧ ¬(x ≡ y)) ∨ ¬(y ∨ w)
    2. Внесем знак отрицания в скобки (закон Де Моргана):
    (z ∨ (x ≡ y))(¬y ∧ ¬w) = 0
       1 часть = 0     2 часть = 0
    
    * Исходное выражение должно быть = 0. Дизъюнкция = 0, когда оба операнда равны 0.
    
  • Разбили исходное выражение на две части, теперь добавим столбцы для двух частей в таблицу истинности:
  • таблица истинности

  • Поясним: в первой части внешняя операция — дизъюнкция (ложна, когда оба операнда ложны). Во второй части внешняя операция — конъюнкция — ложна во всех случаях кроме того, когда оба операнда истинны:
  • (z ∨ (x ≡ y)) = 0 когда z = 0 и x ≡ y = 0
    
    ¬y ∧ ¬w = 0 когда:
    1. ¬y = 0  ¬w = 0
    2. ¬y = 1  ¬w = 0
    3. ¬y = 0  ¬w = 1
    
  • В результирующей таблице истинности получили только три набора значений переменных при котороых выражение возвратит ложь.
  • x y w z F
    0 1 0 0 0
    0 1 1 0 0
    1 0 1 0 0
  • Сравнив их с исходной таблицей истинности, имеем:
  • y w x z F
    1 1 0 0 0
    1 0 0 0 0
    0 1 1 0 0
  • Таким образом, ответ: ywxz

Результат: ywxz

Доступно видео решения этого задания:



Задание 2_13: Разбор досрочного егэ по информатике 2019

Логическая функция F задаётся выражением

(x ∧ ¬y) ∨ (y ≡ z) ∨ ¬w

Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z, w.
В ответе напишите буквы x, y, z, w в том порядке, в котором идут соответствующие им столбцы.

Перем.1 Перем.2 Перем.3 Перем.4 F
??? ??? ??? ??? F
0 0 0
0 1 0 1 0
1 0 0

✍ Решение:
 

Результат: xwzy

Видеорешение:


Поделитесь уроком с коллегами и друзьями:[SvenSoftSocialShareButtons]
9 комментариев

    Наталья

    Спасибо за разборы. В задаче К. Поляков, вариант 76 исправьте х7 на F, а то не понятно.

      admin

      Спасибо, конечно) исправлено

    Яна

    Спасибо за такой разбор всех заданий ЕГЭ по информатике, очень полезно!:)
    Здорово, что на одно задание вы делаете разбор множества номеров.

    Яна

    очень нравится, что присутствуют задания с Полякова

    девочка Маша

    Самый нормальный сайт при подготовке к егэ по информатике для тех у кого нет денег на репетиторов. Спасибо

    Eli

    Спасибо Вам огромное!!! Чтобы мы без вас делали)

    Николай

    Круто, первое впечатление о сайте хорошее, надеюсь, при полном просмотре сайта смогу решить все задания егэ.

    Татьяна

    Спасибо. Хорошее объяснение.

    Жаргалма

    Спасибо огромнейшее!!!!! Очень помогли.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

*
*


Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить