Задание 13 ОГЭ информатика по теме «Дискретная форма представления числовой, текстовой, графической и звуковой информации»

На уроке рассмотрен материал для подготовки к ОГЭ по информатике, разбор 13 задания. Объясняется тема двоичного представления информации.

ОГЭ по информатике 13 задания объяснение

13-е задание: «Дискретная форма представления числовой, текстовой, графической и звуковой информации».
Уровень сложности — базовый,
Максимальный балл — 1,
Примерное время выполнения — 3 минуты.

Двоичная система счисления

Количество цифр (основание системы): 2
Входящие цифры (алфавит): 0, 1

Перевод чисел из 10-й системы счисления в двоичную:


Перевод чисел из 10-й системы счисления в двоичную

Перевод чисел из 10-й сист. сч-я в двоичную

Егифка ©:

егифка перевода из десятичной в двоичную систему счисления

Перевод чисел из двоичной системы счисления в десятичную:


Перевод чисел из 2-й системы счисления в 10-ую

Перевод чисел из 2-й сист. сч-я в 10-ую

Егифка ©:

егифка перевода из двоичной в десятичную систему счисления

При работе с большими числами, лучше использовать разложение по степеням двойки:

разложение по степеням двойки

Разложение по степеням двойки

Егифка ©:

егифка разложения по степеням двойки

Восьмеричная система счисления

Количество цифр (основание системы): 8
Входящие цифры (алфавит): 0, 1, 2, 3, 4, 5, 6, 7

Перевод чисел из десятичной системы счисления в восьмеричную


Перевод чисел из 10-й системы счисления в 8-ую

Перевод чисел из 10-й сист. сч-я в 8-ую


Перевод чисел из восьмеричной сист. сч-я в десятичную


Перевод чисел из 8-й системы счисления в 10-ую

Перевод чисел из 8-й системы счисления в 10-ую

Перевод чисел из 8-й сист. сч-я в 2-ую и обратно триадами
Перевод чисел из 8-й системы счисления в 2-ую и обратно триадами

Перевод из восьмеричной сист. сч-я в двоичную и обратно триадами

Егифка ©:

егифка перевод из двоичной системы счисления в восьмеричную

Шестнадцатеричная система счисления

Количество цифр (основание системы): 16
Входящие цифры (алфавит): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A (10), B (11), C (12), D (13), E (14), F (15)

Перевод чисел из десятичной системы счисления в шестнадцатеричную
Перевод чисел из 10-й системы счисления в 16-ую

Перевод из десятичной сист. сч-я в шестнадцатеричную

Перевод из шестнадцатеричной системы счисления в десятичную
Перевод чисел из 16-й системы счисления в 10-ую

Перевод из 16-й сист. сч-я в 10-ую

Перевод чисел из двоичной сист. сч-я в шестнадцатеричную и обратно тетрадами
Перевод чисел из 2-й системы счисления в 16-ую и обратно тетрадами

Перевод из двоичной с. сч-я в шестнадцатеричную и обратно тетрадами

Егифка ©:

егифка перевод из двоичной системы счисления в шестнадцатеричную

  • желательно выучить таблицу двоичного представления цифр от 0 до 7 в виде триад (групп из 3-х битов):
  • X10,X8    X2
    0	000
    1	001
    2	010
    3	011
    4	100
    5	101
    6	110
    7	111
    
  • желательно знать таблицу двоичного представления чисел от 0 до 15 (в шестнадцатеричной с-ме – 0-F16) в виде тетрад (групп из 4-х битов):
  • X10     X16      X2
    0	0       0000
    1	1       0001
    2	2       0010
    3	3       0011
    4	4       0100
    5	5       0101
    6	6       0110
    7	7       0111
    8	8	1000
    9	9	1001
    10	A	1010
    11	B	1011
    12	C	1100
    13	D	1101
    14	E	1110
    15	F	1111
    

Разбор 13 задания ОГЭ по информатике

Решение задания 13.1:

Переведите число 120 из десятичной системы счисления в двоичную систему счисления. В ответе укажите двоичное число.


✍ Решение:
 

  • Так как перевод осуществляется в двоичную систему счисления, то используем деление на 2:
  •       рез-т     остаток
    120 |   60   |  0
    60  |   30   |  0
    30  |   15   |  0
    15  |    7   |  1
    7   |    3   |  1
    3   |    1   |  1
    
  • Перепишем все остатки снизу вверх, не забыв последний делитель 1!
  • Получим двоичное число: 1111000

Ответ: 1111000


Решение задания 13.2:

Переведите двоичное число 1101010 в десятичную систему счисления. В ответе укажите десятичное число.

✍ Решение:
 

  • Выполним быстрый перевод. Для начала над каждым разрядом исходного двоичного числа подпишем степени двойки справа налево:
  • 64 32  16  8  4  2  1
    1  1  0  1  0  1  0
    
  • Рассчитаем сумму тех степеней двоек, которые находятся над единичными разрядами:
  • 64 + 32 + 8 + 2 = 106
  • Получим десятичное число: 106

Ответ: 106


Поделитесь уроком с коллегами и друзьями:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*
*

Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить